Главная Энциклопедия Замес теста в хлебопекарном производстве

Замес теста в хлебопекарном производстве

Печать

Замес теста в хлебопекарном производстве

подготовка теста на хлебозаводе

ПРОЦЕССЫ, ПРОИСХОДЯЩИЕ ПРИ ЗАМЕСЕ ТЕСТА

Замес теста — важнейшая технологическая операция, от которой в значительной степени зависит дальнейший ход технологического процесса и качество хлеба. При замесе теста из муки, воды, дрожжей, соли и других составных частей получают однородную массу с определенной структурой и физическими свойствами, чтобы в последующем при брожении, разделке и расстойке тесто хорошо перерабатывалось. С самого начала замеса в полуфабрикатах начинают происходить различные процессы — физические, биохимические и др. Существенная роль в образовании пшеничного теста принадлежит белковым веществам. Нерастворимые в воде белки муки, соединяясь при замесе с водой, набухают и образуют клейковину. При этом белки связывают воду в количестве, примерно в два раза превышающем свою массу. Набухшие белковые вещества муки образуют как бы каркас теста губчатой структуры, что и определяет растяжимость и эластичность теста. Основная часть муки (зерна крахмала) адсорбционно связывает большое количество воды. Значительное количество воды поглощается также пентозанами (полисахариды)муки. Крахмал связывает воду в количестве 30 % от своей массы. Но поскольку в муке крахмала значительно больше, чем белков, количество воды, связанное белками и крахмалом, примерно одинаково. В тесте одновременно образуется как жидкая фаза, так и газообразная фаза, образованная за счет удержания пузырьков воздуха, в атмосфере которого происходит замес, и за счет пузырьков углекислого газа, выделяемых дрожжами. Следовательно, тесто представляет собой полидисперсную систему, состоящую из твердой, жидкой и газообразной фаз. От соотношения фаз в этой полидисперсной системе зависят физические свойства теста. Наряду с физическими и коллоидными процессами в тесте под действием ферментов муки и дрожжей начинают проходить и биохимические процессы. Наибольшее влияние оказывают протеолитические ферменты муки, которые дезагрегируют белок, что действует на физические свойства теста. Однако соприкосновение теста во время замеса с кислородом воздуха значительно снижает дезагрегационное влияние протеолитических ферментов. В меньшей степени действуют и амилолитические ферменты, расщепляющие крахмал. Механическое воздействие месильного органа на тесто, образующееся при замесе, в первый период способствует набуханию белков и образованию губчатого клейковинного каркаса, что улучшает физические свойства теста. Белки ржаной муки отличаются от белков пшеничной муки тем, что в ржаном тесте не образуется губчатого клейковинного каркаса. Значительная часть белков ржаной муки в тесте неограниченно набухает и переходит в коллоидное состояние. В ржаной муке содержится около 3 % высокомолекулярных углеводных соединений — слизей. Из белков, слизей и других составных частей теста (растворимых декстринов, соли, водорастворимых -веществ муки), перешедших в вязкое коллоидное соединение, в ржаном тесте образуется вязкая жидкая фаза, от состояния которой в значительной степени зависят физические свойства ржаного теста. Ржаное тесто характеризуется большой вязкостью, пластичностью и малой упругостью, эластичностью. Ржаное тесто мало растягивается. На физические свойства ржаного теста оказывает влияние соотношение пептизированных (гидратированных) и ограниченно набухших белков, которое в основном зависит от кислотности ржаного теста, от содержания в нем молочной кислоты. Поэтому тесто для ржаного хлеба изготавливается с значительно более высокой кислотностью, чем для пшеничного. При недостаточно высокой кислотности ржаного теста пептизированные белки не переходят или слабо переходят в жидкую фазу. В процессе замеса теста повышается его температура, так как механическая энергия замеса частично переходит в тепловую, что в начальной стадии замеса ускоряет образование теста. При работе на тихоходных машинах (с частотой вращения месильного органа 25—40 об/мин) повышение температуры теста при замесе практического значения не имеет. Однако при замесе теста на быстроходных машинах выделяется большое количество тепла, что ведет к усилению гидролитического действия ферментов и может привести к ухудшению физических свойств теста. Чтобы предотвратить эти изменения, применяют искусственное охлаждение теста. Для этой цели корпус тестомесильной машины снабжают водяной рубашкой.

СПОСОБЫ ЗАМЕСА ТЕСТА

Замес теста в хлебопекарном производстве

В зависимости от конструкции тестомесильной машины замес теста может быть периодическим или непрерывным. Тестомесильные машины периодического действия замешивают отдельные порции теста через определенные промежутки времени (ритм замеса составляет 10—30 мин). В машинах непрерывного действия дозировка сырья в месильную емкость, замес и выгрузка теста происходят непрерывно (поточно). Непрерывно-поточный способ замеса и приготовления теста имеет большие преимущества перед порционным тестоприготовлением. При непрерывном процессе повышается производительность труда работающих и облегчаются его условия. Один тестовод может обслуживать до 3 тестомесильных машин непрерывного действия. Непрерывные процессы легче автоматизируются. Непрерывно-поточное приготовление теста создает предпосылки для обеспечения параметров теста и происходящих в нем процессов на заданном уровне, тогда как в тесте, изготовляемом порционно, неизбежны колебания кислотности, влажности и других показателей. В то же время порционное приготовление теста отличается большей технологической гибкостью. В этом случае легче регулировать технологический режим, исправить ошибки в замесе и приготовлении теста, обеспечить двухсменный режим работы, перейти от выработки одного вида изделия к другому. При малой мощности печей или при выработке широкого ассортимента изделий на одной производственной линии порционный замес пока незаменим. Замес теста может быть осуществлен при различной затрате энергии, т. е. осуществлен с различной интенсивностью механической обработки теста в месильной машине. При интенсивном замесе микромолекулы клейковины частично дезагрегируются, но затем их структура перестраивается за счет разрыва одних и образования других связей, что улучшает эластичность теста. Зерна крахмала при интенсивном замесе механически повреждаются. Они становятся более податливыми для действия Р-амилазы, отчего увеличивается количество сахара в тесте, возрастает газообразование. Интенсивно замешенное тесто характеризуется большей пластичностью и вязкостью, но меньшей упругостью по сравнению с тестом, замешенном при минимальных энергозатратах. Реологические свойства и химический состав теста после интенсивного замеса близки по свойствам и составу выброженному тесту. В тесте возрастает содержание водорастворимых веществ (сахаров, аминокислот и др.), полимеры муки более прочно связывают влагу. Интенсивный замес теста широко применяется при ускоренных способах приготовления пшеничного теста (особенно для булочных и сдобных изделий). При длительном брожении теста интенсивный замес теста технологически не оправдан. При интенсивном замесе теста брожение ускоряется в 2— 3 раза, объем изделий повышается на 10—20%, мякиш хлеба становится более эластичным, пористость — мелкой и равномерной. Вследствие увеличения количества сахаров и аминокислот в тесте корка хлеба интенсивно окрашивается. В то же время при интенсивном замесе теста возрастает в 2—3 раза расход электроэнергии, интенсивный замес в большей степени повышает температуру теста, чем замес при обычных энергозатратах. При интенсивном замесе важно установить оптимальный расход энергии в каждом конкретном случае, так как при излишней механической обработке теста клейковинный каркас разрушается, тесто становится липким и слабым. Чем выше сорт муки, тем выше должна быть интенсивность замеса, так как клейковина муки низких выходов более сильная и упругая. Чем сильнее мука, тем больше энергии следует расходовать на замес. С повышением температуры теста энергия замеса должна быть снижена. С увеличением дозировки дрожжей интенсивность замеса целесообразно несколько снизить, так как при большем количестве дрожжевых клеток тесто бродит интенсивно, что несколько ослабляет клейковину. Кроме того, дрожжи содержат активатор протеолиза — глютатион. С увеличением удельного содержания муки в опаре энергозатраты на замес должны быть снижены, так как в опаре достаточно полно проходят все процессы созревания. Если на замес безопарного теста надо затратить 41 Дж/г, то на замес теста, приготовленного на опаре с 25 % муки, требуется около 33 Дж/г. Ржано-пшеничное, и в большей степени ржаное, тесто вследствие слабой структуры белков замешивают с интенсивностью 8—10 Дж/г.


ТЕХНОЛОГИЧЕСКАЯ ХАРАКТЕРИСТИКА ОБОРУДОВАНИЯ ДЛЯ ЗАМЕСА ТЕСТА

К технологическому оборудованию, применяемому для замеса теста, относятся дозировочная аппаратура и тестомесильные машины. Дозировочная аппаратура по своему назначению делится на дозаторы муки, дозаторы полуфабрикатов (опары, закваски) и дозаторы жидких компонентов теста (растворов соли, сахара, дрожжей, жидкого жира и др.). Точность дозирования ингредиентов теста имеет большое технологическое значение, особенно при непрерывном замесе, поэтому дозаторы непрерывного действия проверяют на точность работы 2—3 раза в смену. При значительной погрешности в дозировке нарушаются установленные рецептуры и нормы расхода сырья, изменяются консистенция теста и качество готовых изделий. Мука при порционном замесе полуфабрикатов дозируется автомукомерами. Жидкие компоненты при порционном замесе теста могут отмериваться по объему автоматическими бачками. Широкое применение получила cтанция дозирования многокомпонентная СДМ7. Станция в зависимости от исполнения дозирует до 5 компонентов. Тестомесильные машины, применяемые в отечественной промышленности. По технологическим соображениям тестомесильные машины должны иметь оптимальную конфигурацию месильного органа и такую частоту его вращения, которая обеспечивала бы достаточно интенсивный замес за короткое время. Частота вращения рабочего органа должна регулироваться по заданной программе в зависимости от силы муки и рецептуры теста. Если тесто готовится из муки сравнительно слабой или в рецептуру включено большое количество жира и сахара, снижающих вязкость теста, то замес должен быть более коротким и при меньшей частоте вращения месильного органа.

Станция дозирования СДМ7   

      ПРИМА-160Р и ПРИМА-300Р